WAR AND PEACE AT MUCOSAL SURFACES: A "TOLL-STO(R)Y"

LARRY N. DIEBEL M.D. WESTERN TRAUMA ASSOCIATION MARCH 4,2010

Tolstoy vs Woody: War and Peace vs Love and Death

War and Peace: Silent killing

INTESTINAL EPITHELIAL BARRIER: ACTIVE NOT PASSIVE

Host Response to Breaks in the Mucosal Barrier

Mucosal defense against invading pathogens

SECRETORY IgA

- The most abundant Ab in secretions
- Polymeric form with high Ag avidity
- In addition to interact with Ag via the Fab (Agspecific) portion of molecule, interacts with bacteria adhesins confers "innate-like properties"

SECRETORY IgA in DEFENSE of MUCOSAL SURFACES

- Prevent Pathogen Adhesion to Host Cells(immune exclusion, canonical)
- Intracellular or serosal neutralization of Ag
- Activation of Non-Inflammatory Pathways
- Homeostatic control of endogenous microflora :

Protection at Mucosal Surface: Speak Softly and Carry a Big Stick Secretory IgA vs IgG

SIgA: Host defense without Collateral damage

BOOK / VOLUME ONE: CYTOSKELETON, IgA AND ETHANOL

PROVERBS 21:2

 Wine is a mocker and beer a brawler; whoever " is led astray by them is a fool."

ALCOHOL AND TRAUMA

GENE MOORE: "THE PERFECT STORM"

ALCHOHOL AND PNEUMONIA RISK

- Increased risk attributed to changes in oral flora, poor oral hygiene, and aspiration
- Previous studies: increased systemic levels of both IgA and SIgA, with deceased gut luminal IgA levels
- Alcohol effects gut cytoskeleton: increased permeability

SIgA transport experiments

- MDCK cells transfected with the plgR for cells incubated with dlgA at 4 degrees C (receptor saturation
- Transfected MDCK monolayers then held in incubator at 37 degrees C and IgA concentrations determined from the apical chamber

Figure 1A: Effect of Taxol Pretreatment on Transcytosis of Ethanol exposed MDCK Cells

*p<0.001 vs. Control at same time period #p<0.001 vs. 1% EtOH/Taxol at same time period BOOK / VOLUME TWO: INTESTINAL EPITHELIAL CELLS AS A PROXIMAL SIGNAL IN INFLAMMATION FROM THE GUT

NEED TO GO UPSTREAM: The Mucosal Surface

GUT and POST-INJURY MOF

- Proinflammatory cytokines released from the gut may cause barrier failure and contribute to remote organ injury and MOF.
- Enterocytes secrete a number of pro-Inflammatory cytokines

Treatment Groups: Effects on PMN cytoxic potential

- Control (Caco-2 cells under normoxic conditions)
- Caco-2 cells + H/R
- Caco-2 cells-normoxia + *E.coli* C-25
- Caco-2 cells + H/R + *E.coli* C-25

Figure 1A: Percent CD11b Expression in PMNs

Figure 1B: Percent CD11 Expression in PMNs in the Presence and Absence of fMLP

Figure 2A: Superoxide anion Production

Figure 2B: Superoxide Production in PMNs in the Presence and Absence of fMLP

Figure 3B: Total Elastase Release by PMNs in the Presence and Absence of fMLP

Figure 4: Effect of Supernatants on PMN Apoptosis at 90 minutes

Figure 5: Apoptosis of HMVEC Cells at 90 minutes

Figure 6: HMVEC Cell Permeability

CaCO2 cell monolayers: in vitro model of the gut epithelial barrier

- CaCO2 cell monolayers incubated with normal gut flora +/- alcohol
- Cytokine release and intestinal barrier integrity responses determined

Figure I: Synergistic Effect of Ethanol and E.coli on Gut TNF-alpha Production

Figure II: Synergistic Effect of Ethanol and E.coli on Caco2 IL-6 production

Figure III: Synergistic Effect of Ethanol and E.coli on Gut Permeability

Intestinal Epithelial Cells: orchestrating the immunoinflammatory response

BOOK / VOLUME 3: IgA AND RESPITORY PATHOGENS IN THE LUNG

Post-Op Pneumonia-Not Just an Epiphenomena

HOST DEFENSE OF THE LUNG IN ICU PNEUMONIA

Humoral Immunity

- Secretory IgA
 - 10% of total protein in BAL fluid
 - Produced locally, plgR mediated transport
 - Anti-inflammatory properties
- IgG
 - 19% of total protein in BAL fluid
 - In respiratory secretions by passive transudation or through leaky epithelial boundary.
 - Has profound ability to enhance inflammatory potential

IgA Modulates Inflammatory Responses in an In Vitro Model of Pneumonia

Figure 1: Comparison of CD11 in PMNs Cocultured with Calu-3 Cells

Figure 3: Comparison of Elastase in PMNs Cocultured with Calu-3 Cells

Figure 5: Basal Compartment IL-6 Levels

N=4 for each group

Figure 6: Basal Compartment TNF- α Levels

Impact of Cleavage of IgA: Relative IgA Deficiency in Respiratory Tract/other Mucosal Surfaces

- Loss of anti-inflammatory properties/exaggerated inflammatory response by other effecter cells.
- Kudsk : SIgA and bacterial pneumonia.

Relative SIgA Deficiency

- Highly dependant on structure for it's function.
- Cleavage of antibody into Fab and Fc fragment renders it immunologically inactive.
- Potential sources
 - PMN/macrophages
 - bacteria

IgA Cleavage

Figure 6: SDS-PAGE of Bacterial Isolates

VAP: Summary from 24 Studies (1,689) episodes and 2,490 pathogens Frequency (%) P. aeruginosa 24.47.9 Acinetobacter sp. Stenotrophomonas 1.7 Enterobacteriacae 14.1 Haemophilus sp. 9.8 Other species all less than 8%

Figure 1: IgA protease activity among respiratory isolates (10⁴ organisms) at 12 hrs.

Intact IgA

*p<0.001 vs. *Pseudomonas*, #p<0.001 vs. *Acinetobacter*

Indirect Effector Functions of sIgA

- Interact of IgA with innate defense factors
 - Complement
 - Potentiate nonspecific antibacterial factors in exocrine secretions
 - Mucin
 - Interact with B and T lymphs, macrophage, PMN's and others
- End results: IgA is relatively ineffective or directly antagonistic compared with IgG or IgM

The Relative Roles of Bacteria and Host Inflammatory Cells in SIgA Degradation

Figure 1: Effect of Primed and Activated PMNs on IgA Cleavage

Figure 4: Effect of Bacterial Isolates on IgA Cleavage

Purpose

- To compare the ability of SIgA vs. IgG to modulate PMN production of proinflammatory cytokines and chemotactic potential.
- To compare the sequence of addition of Ig isotypes SIgA and IgG on cytokine production in the cell culture system.
- To examine the effect of the sequence of Ig isotype exposure on modulating PMN chemotactic ability in vitro.

Regional Differences in *Ig isotypes* at Respiratory Surfaces

Figure 1: Effect of the sequence of exposure by IgA and IgG to E. coli mediated IL-6 production by monocyte-PMN cultures

Figure 3: Effect of the sequence of exposure by IgA and IgG to E. coli mediated TNFα production by monocyte-PMN cultures

Figure 5: Effect of the sequence of exposure by IgA and IgG to E. coli mediated IL-8 production by monocyte-PMN cultures

Figure 6: Effect of the sequence of exposure by IgA and IgG to LPS mediated IL-8 production by monocyte-PMN cultures

Figure 7: Effect of monocyte supernatants co-cultured with E. coli and IgA and IgG on chemotaxis of PMN

*p<0.001 vs. E. coli and E. coli + IgG-IgA N = 4 for each group

RECENT STUDIES

- WTA: 2009 Crested Butte
 Decreased survival and greater lung inflammation in survivors: PIgR KO mice
- SIS : April 2010: Increased inflammatory potential after exposure to "Virulent Strains" of Pseudomonas and Acinetobacter (CLEAVAGE of SIgA)

BOOK / VOLUME 4: PATHOGEN RECEPTOR RECOGNITION: A TOLL BRIDGE BETWEEN INNATE AND ADAPTIVE ARMS OF THE IMMUNE SYSTEM

Toll-Like Receptor Associated Molecules

Disparate Effects of Bacteria and Toll-Like Receptor Dependant Bacterial Ligand Stimulation on IgA Transcytosis

To study the effect of gram negative or gram positive bacteria and Toll-Like receptor bacterial ligand pathways on IgA transcytosis.

Figure 1: IgA Transcytosis in HT-29 Cells Following Stimulation with G- or G+ Bacteria and TLR ligands

Figure 8: Densitometry Determination of plgR Expression at Timed Intervals Following Stimulation with LPS

Conclusions

- Stimulation by gram negative bacteria led to increased IgA transcytosis.
- Stimulation by the TLR-4 ligand, LPS, also led to increased IgA transcytosis in this model.
- The disparate effects between gram negative and gram positive bacteria and TLR-4 vs. TLR-2 pathways may have significant implications in the host response at mucosal surfaces.

Organ Specific Innate Immune Response: Does injury reset the TLR rheostat?

$\left(\right)$			
36	compartment	microbial contact	PRR sensitivity
	blood	none	high every microbial contact indicates danger
CREE	airways, skin	frequent	regulated certain microbial load might be tolerated
	gut	permanent	suppressed tolerance is dominating
J. K			•
Gazing into the Mucus layer: The Epilogue

HOMEOSTATIC CONTROL OF GUT FLORA AND IgA

- Endogenous commensal bacteria elicit production of both microbe-specific and natural polyreactive IgA (+/- T-cell depend)
- SIgA contributes to "host-parasite mutualism" the homeostatic balance which controls the degree of bacterial colonization in the gut
- Mutualism is dependent on "natural polyreactive Ab, (cross-reactive for #s of redundant Ag on commensal bacteria
- IMPAIRED WITH GUT I/R (ACUTE) OR IBD(CHRONIC)?

PASSIVE IMMUNIZATION WITH SIgA at MUCOSAL SITES

- GUT: Administer SIgA with Biologic Fluids via enteral route: problems with stomach acid
- Upper Airways: SIgA administer via nose drops or aerosol
- Importance of Mucus at mucosal sites for anchoring SIgA

OTHER POTENTIAL ROLES FOR USE OF SIgA

- Active or Passive Immunization against viral or bacterial infections contracted at mucosal sites (influenza, Shigella, AIDS)
- Addition of SIgA containing biologics (Colostrum or artificial) to control diarrhea, including C-diff, and to improve enteral feeding tolerance in the ICU

