Western Trauma Association 1st Founder's Basic Science Lecture

Injury and Intestinal Barrier Dysfunction: Past, Present, and Future

Raul Coimbra MD, PhD, FACS Professor of Surgery Chief, Division of Trauma, Surgical Critical Care, and Burns Department of Surgery University of California San Diego School of Medicine

Background

- The intestine plays a significant role in the systemic inflammatory response (SIRS)
- SIRS can lead to distant organ injury, multi-organ failure, and death
- Our understanding of the gut's role in causing SIRS has evolved over the past several decades

Bacterial Translocation

- 1980's: Gut Origin of Sepsis
 - Passage of luminal bacteria (endotoxin) into portal circulation¹
 - Bacteria found in mesenteric lymph nodes²
 - Bacteria reaches systemic circulation via portal vein
 - Kupffer cells produce cytokines
 - Systemic Inflammatory Response

1. Alexander, et al. *Ann Surg.* 1990;212:496-510 2. Deitch, et al. *J Clin Invest.* 1989;84:36-42

Bacterial Translocation

- Early 1990's: Bacterial Translocation in question
- Moore, et al: Is there enteric bacteria in the portal blood of severely injured trauma patients?
 - 20 injured patients requiring emergent laparotomy
 - Portal vein catheters inserted
 - Blood drawn up to 5 days post-operatively
 - 8/212 (2%) of blood cultures positive
 - 7 presumed contaminants
 - 1 S. Aureus in patient with known S. Aureus pneumonia
 - <u>Conclusion</u>: No portal or systemic bacteremia despite 30% incidence of MOF in these patients

Moore FA, et al. *J Trauma.* 1991;31:629-636.

EDGAR J. POTH MEMORIAL/W. L. GORE LECTURE

The Role of the Gastrointestinal Tract in Postinjury Multiple Organ Failure

Frederick A. Moore, MD, Houston, Texas

"We look hard at what is routinely done in the Shock Trauma ICU and ask, 'How does this treatment affect the gut function?' We are finding that when a person is critically ill, the gastrointestinal (GI) tract doesn't work. If we can make the gut work better, then we can prevent a lot of infection,"

Gut Inflammation

- 1990's-Present: Gut Inflammation
 - Gut barrier breakdown causes intestinal inflammatory response
 - Intestinal cytokine production
 - Gut-derived inflammatory mediators carried in intestinal lymph
 - Activated intestinal lymph causes SIRS, distant organ injury

1. Deitch, EA. *Surgery*. 2002;131:241-244 2. Magnotti, et al. *Ann Surg*. 1998;228:518-27

Mesenteric lymph from burned rats induces endothelial cell injury and activates neutrophils

Edwin A. Deitch, MD; Han Ping Shi, MD; Qi Lu, MD; Eleonora Feketeova, MD; Joan Skumick, PhD; Da Zhong Xu, PhD, MD

- Mesenteric lymph from burned animals:
 - Activate PMNs
 - Activate endothelial cells
- Portal vein plasma did not activate PMNs

Table 4. Burn lymph potentiates the polymorphonuclear leukocyte (PMN)-stimulated PMN respiratory burst

	PMN Respiratory Burst, Mean Fluorescence Intensity	
Group	Rat PMNs	Human PMNs
Medium Sham burn Burn	145 ± 40 308 ± 67 ^a 718 ± 193 ^b	205 ± 59 313 ± 52° 771 ± 318 ^b

 $^{o}p < .05$ vs. medium; ^bthsp < .001 vs. all other groups. Data are expressed as mean \pm sp; n = 7–8 rats per group.

Intravenous Injection of Trauma-Hemorrhagic Shock Mesenteric Lymph Causes Lung Injury That Is Dependent Upon Activation of the Inducible Nitric Oxide Synthase Pathway

Maheswari Senthil, MD, Anthony Watkins, MD, Dimitrios Barlos, MD, Da-Zhong Xu, MD, PhD, Qi Lu, MD, Billy Abungu, BSc, Frank Caputo, MD, Rena Feinman, PhD, and Edwin A. Deitch, MD

Mesenteric Lymph Duct Ligation Attenuates Lung Injury and Neutrophil Activation After Intraperitoneal Injection of Endotoxin in Rats

Anthony C. Watkins, MD, Francis J. Caputo, MD, Chirag Badami, MD, Dimitrios Barlos, MD, Da Zhong Xu, MD, PhD, Qi Lu, MD, Eleanora Feketeova, MD, and Edwin A. Deitch, MD

- Lymphatic Duct Ligation (LDL)
 - Decreases histologic lung injury
 - Decreases lung permeability
 - Decreases neutrophil CD11b expression

Lung Injury Score

BIOACTIVITY OF POSTSHOCK MESENTERIC LYMPH DEPENDS ON THE DEPTH AND DURATION OF HEMORRHAGIC SHOCK

Tomohiko Masuno, Ernest E. Moore, Aaron M. Cheng, Eric L. Sarin, and Anirban Banerjee

Department of Surgery, Denver Health Medical Center and University of Colorado Health Sciences Center, Denver, CO

- Mesenteric lymph flow depends on depth of shock
- Maximal PMN priming by mesenteric lymph occurs in the 3rd hour post-shock
- Activity of mesenteric lymph depends on depth and duration of shock

Time Course of PMN Priming by Mesenteric Lymph

Arachidonic acid in postshock mesenteric lymph induces pulmonary synthesis of leukotriene B₄

Janeen R. Jordan,^{1,2} Ernest E. Moore,^{1,2} Eric L. Sarin,^{1,2} Sagar S. Damle,^{1,2} Sara B. Kashuk,¹ Christopher C. Silliman,^{1,3} and Anirban Banerjee¹

RINGER'S LACTATE

Current standard resuscitation regimen

- Potentiates neutrophil activation
 - Rhee et al. 1998
- Contributes to end organ injury
 - Savage et al. 2005

Sham

RL

Pentoxifylline (PTX)

- Non-specific
 Phosphodiesterase Inhibitor
 - Increases cyclic AMP
 - PKA activation
- Clinical Applications:
 - Intermittent Claudication
 - Alcoholic Hepatitis
- Animal Models:
 - Decreases pro-inflammatory cytokine activation
 - Attenuates neutrophil oxidative burst
 - Decreases distant organ injury

Hemorrhagic shock

Coimbra R, et al, Shock 2000

Ringer's Lactate

Classic treatment

Hemorrhagic Shock

Hemorrhagic

Shock

Hypertonic Saline + Pentoxifylline

Proposed treatment

 Improves microcirculation Attenuates oxidative stress Downregulates neutrophil function Reduces host organ injury

Hemorrhagic Shock

Ringer's Lactate (RL)

 Potentiate neutrophil activation

Resuscitation 2004

- Promote endothelial dysfunction J Trauma 2005
- Contribute to end
 organ injury

J Trauma 2006

HSPTX

- Reduce oxidative stress
- Downregulate PMN function
 - J Trauma 2005
- Attenuate Post-shock
 Lung Injury
 - J Trauma 2006

The Journal of TRAUMA* Injury, Infection, and Critical Care

HSPTX Protects Against Hemorrhagic Shock Resuscitation-Induced Tissue Injury: An Attractive Alternative to Ringer's Lactate

Raul Coimbra, MD, PhD, FACS, Rafael Porcides, MD, William Loomis, BS, Heidi Melbostad, BS, Rohan Lall, MD, Jessica Deree, MD, Paul Wolf, MD, and David B. Hoyt, MD, FACS

Coimbra, et al. J Trauma 2006;60:41-51

Nitric oxide and Ischemia Reperfusion

 iNOS induction and production of sustained quantities of NO occur in the gut after I/R injury.

Nitric oxide

Direct effects on cell signaling: Transcription factor activation (NF- κ B and STAT3) and cytokine production (TNF- α and IL-6)

J Exp Med 1998

Indirect cytotoxic effects: Peroxynitrite formation

Hypothesis

 The attenuation in gut injury observed with HSPTX after hemorrhagic shock is associated with a decrease in intestinal iNOS activity and NO-mediated events including local pro-inflammatory cytokine production when compared to RL in vivo.

Methods

- RL: 32 mL/kg racemic RL (n=7)
- HSPTX: 4 mL/kg 7.5% NaCl + PTX 25 mg/kg (n=7)
- Sham group (n=5)

iNOS Content

Nitrite

|*| P < 0.05

Cytoplasmic I- κ B α Phosphorylation

Nuclear NF- κ B Phosphorylation

* P < 0.01

STAT-3

* P < 0.01

Interleukin-6

* P < 0.01

Hypertonic Saline and Pentoxifylline Attenuates Gut Injury After Hemorrhagic Shock: The Kinder, Gentler Resuscitation

Jessica Deree, MD, Tercio de Campos, MD, Edna Shenvi, BS, William H. Loomis, BS, David B. Hoyt, MD, and Raul Coimbra, MD, PhD

Deree, et al. *J Trauma*. 2007;62:818-28.

Phosphodiesterase inhibition downregulates intestinal injury and inducible nitric oxide synthase activity after hemorrhagic shock

JESSICA DEREE, WILLIAM H. LOOMIS, JAMES G. PUTNAM, PAUL WOLF, TODD COSTANTINI, DAVID B. HOYT and RAUL COIMBRA

TNF- α and Intestinal Barrier

The pivotal role of tumor necrosis factor-alpha in signaling apoptosis in intestinal epithelial cells under shock conditions.

Diebel LN, Liberati DM, Baylor AE 3rd, Brown WJ, Diglio CA

J Trauma. 2005 May;58(5):995-100

L. Diebel, MD

Gut Barrier Breakdown

- 2008: Intestinal Barrier Injury
 - Can we prevent the intestinal inflammatory response and subsequent SIRS by limiting intestinal barrier breakdown?

Intestinal Tight Junction

- Creates physical barrier that seals the space between adjacent epithelial cells
- Regulates intestinal permeability
- Modulation of tight junction proteins alters epithelial barrier function

Normal Intestinal Barrier

Mechanical	Nonmechanical	
Peristalsis	Normal gut flora-mediated colonization resistance	
Epithelial barrier	Secretory immunoglobulins	
Mucus layer	Gut-associated lymphoid tissue	
Tight junctions	Dendritic cells	
	Macrophages	
	Antigen receptors	

Table. Protective mechanisms of the intestine

Intestinal Tight Junction

- Occludin
 - Four transmembrane domains
 - Attaches adjacent cells at tight junction
- ZO-1
 - Attaches occludin to perijunctional actin cytoskeleton
- Myosin light chain kinase (MLCK)
 - Increases phosphorylation of myosin light chain (MLC)
 - Modulates contraction of the actin cytoskeleton

Caco-2 cells + Cytomix

Costantini T, et al., Life Sciences, 2009

Caco-2 cells + Cytomix

Costantini T, et al., *Life Sciences*, 2009

Phosphodiesterase inhibition attenuates alterations to the tight junction proteins occludin and ZO-1 in immunostimulated Caco-2 intestinal monolayers

Todd W. Costantini, Jessica Deree, William Loomis, James G. Putnam, Sunghyuk Choi, Andrew Baird, Brian P. Eliceiri, Vishal Bansal, Raul Coimbra * Life Sciences 84 (2009) 18–22

Costantini T, et al., Life Sciences, 2009

Burn-induced Histologic Gut Injury

Sham Burn **Burn/PTX** 2 hour 6 hour

Costantini, et al. J Trauma. 2009

Intestinal Occludin

Costantini, et al. Shock. 2009

Intestinal ZO-1

Tight Junction Confocal Microscopy

Costantini, et al. Shock. 2009

BURN-INDUCED GUT BARRIER INJURY IS ATTENUATED BY PHOSPHODIESTERASE INHIBITION: EFFECTS ON TIGHT JUNCTION STRUCTURAL PROTEINS

Todd W. Costantini, William H. Loomis, James G. Putnam, Dana Drusinsky, Jessica Deree, Sunghyuk Choi, Paul Wolf, Andrew Baird, Brian Eliceiri, Vishal Bansal, and Raul Coimbra

Division of Trauma, Surgical Critical Care, and Burns, Department of Surgery, University of California-San Diego School of Medicine, San Diego, California

Intestinal Permeability

Intestinal Barrier Breakdown

- Myosin light chain kinase (MLCK)
 - Increases phosphorylation of myosin light chain
 - TNF- α increases MLCK expression
 - Increased MLCK protein expression:
 - Decreases ZO-1 and occludin levels
 - Increases intestinal permeability

Intestinal Barrier Breakdown

- Intestinal NF- κ B
 - NF- κ B mediates activation of MLCK by binding to MLCK promoter
 - Inhibition of NF- κ B p65 decreases MLCK activation

Ye, et al. Am J Physiol Gastrointest Liver Physiol 2006;290:496-504

Methods

30% TBSA steam burn for 7 seconds

Intestinal Myosin Light Chain Kinase

Cytoplasmic Phosphorylated IKK α / β

Cytoplasmic Phosphorylated IkB α

Nuclear NF- κ Bp65

Intestinal TNF- α

Phosphorylated MLC Confocal Microscopy

Costantini, et al. J Trauma 2009

 $Bar = 20 \,\mu m$

The Journal of TRAUMA® Infury, Infection, and Ortical Care

Pentoxifylline Modulates Intestinal Tight Junction Signaling After Burn Injury: Effects on Myosin Light Chain Kinase

Todd W. Costantini, MD, William H. Loomis, BS, James G. Putnam, BS, Lauren Kroll, BS, Brian P. Eliceiri, PhD, Andrew Baird, PhD, Vishal Bansal, MD, and Raul Coimbra, MD, PhD

Intestinal Permeability 4 Hours Post-Burn

J Trauma. 2009;66:17-24

What is in the Future?

Future #1: Novel Imaging of Intestinal Injury

- Intraluminal placement of near-infrared dye
 - Alexa Fluor 680
- Imaging using Xenogen IVIS Lumina
- Quantification of fluorescence
 - Correlates with "classic" assays of intestinal injury and intestinal permeability

Near-infrared Imaging of Intestinal Injury

Quantification of Near-infrared Imaging

Abdominal Quantification

Gavage Time Course

Gavage Quantification

Future #2

Utilizing Phage Display Technology to Identify Peptide Sequences Targeting the Burn Injured Intestinal Barrier

Todd W. Costantini MD, Carrie Y. Peterson MD, James G. Putnam BS, Ritsuko Sawada PhD, William H. Loomis BS, Brian P. Eliceiri PhD, Andrew Baird PhD, Vishal Bansal MD, Raul Coimbra, MD, PhD

Background

- Intestinal injury is known to result from several clinical conditions resulting in significant morbidity and mortality
 - Severe trauma, burn
 - Inflammatory bowel disease
 - Necrotizing enterocolitis
- The ability to effectively target the intestinal mucosa to deliver biotherapies could be of powerful clinical utility
 - Prevent gut injury
 - Speed intestinal barrier healing

Drug Delivery

- Delivery of therapeutics to the intestinal mucosa remains a difficult problem
- Must be delivered to the cells of the intestinal wall in sufficient quantities to achieve the desired effect
 - Issues of clearance
 - Timing of drug delivery
 - Alterations in perfusion to the gut following injury

Phage Display

- Used to identify functional targeting ligands and their corresponding receptors.
- Diverse libraries of peptide sequences (1 x 10¹²) can be displayed by utilizing the bacteriophage M13.
- Single peptide sequence is displayed on a single phage
 - Allows for biopanning of a large number of peptide sequences

Bacteriophage M13

Arap MA. *Gen Mol Biol* 2005;28:1-9

Phage Display

- Phage-based vectors can be used to identify peptides which can perform targeted delivery of biotherapeutics
 - Genes, antibiotics, growth factors
- Screen for peptides that home to specific tissues
- Wide-ranging applications
 - Cancer Therapies:
 - Targeting tumor vasculature with TNF- α ¹
 - Screening for antigens overexpressed by carcinomas²
 - 1. Tandle A, et al. Cancer 2009;115:128-39
 - 2. Kurosawa G, et al. Nat Med 2008;105:7287-92

Hypothesis

- We postulated that by utilizing in vivo phage display, we would identify peptide sequences which internalize into the intestinal epithelial following severe injury
- We could bind this newly discovered peptide sequence to fluorescent nanoparticles in order to image its delivery into the gut barrier

Methods- Phage Screening

30% TBSA steam burn for 7 seconds

- Intestinal mucosa isolated 2 hours following burn
- Mucosa incubated with Phage library containing 10¹² different peptide sequence
- Selected Phage amplified using E. coli
- Process repeated 3 times to select for gut-targeting peptide sequence

Methods- Intraluminal Delivery of Phage

- Perform Laparotomy
- Isolate 3 segments of distal small intestine between silk ties
- Inject 200 μ I containing 1 x 10⁹ phage or control (PBS or "empty phage")
- Close Abdomen

- Harvest each segment of distal small intestine
- •Bowel segments washed with PBS, Trypsin using a peristaltic pump
- •Phage DNA isolated from specimens for PCR

Candidate Peptide Sequences

			Peptide Sequence			Peptide Sequence
	1	IM1-3T-1	YGFELMVMASQV	21	IM1-3AS-1	APMITKSWPSGP
	2	IM1-3T-2	STYAVVTSMVWP	22	IM1-3AS-2	TMSATNTGAMHS
	3	IM1-3T-3	ASLSGHQYSHTD	23	IM1-3AS-4	TMSATNTGAMHS
	4	IM1-3T-4	SPLPSHKSQHTW	24	IM1-3AS-5	LPPYLWPSKVTP
	5	IM1-3T-5	FKPTPGDTAPPS	25	IM1-3AS-7	TGALPRPGGSLV
	6	IM1-3T-6	NGERMTQLRLLL	26	IM1-3AS-8	NPNLNTRVLVTG
	7	IM1-3T-7	HNPMYFPAAQSL	27	IM1-3AS-9	ADRHASNYPRWD
	8	IM1-3T-8	MIHRPSTGLISS	28	IM1-3AS-10	ADLLTSHPFQRP
	9	IM1-3T-9	TAITSTPWLQWA	29	IM1-3AS-11	NLHVDRTPHPFS
	10	IM1-3T-10	SKLPHYELEFVQ	30	IM1-3AS-12	NMHFMSRSVHAL
	11	IM1-3T-12	QLVTSSTQPPEH	31	IM1-3AS-13	DRNTDIHVSRLP
	12	IM1-3T-13	FSMGMIRDPNLL	32	IM1-3AS-14	GTLPIGLTQNHK
	13	IM1-3T-14	GFSSAPLTRSTP	33	IM1-3AS-15	NPAGPSPAHI I S
	14	IM1-3T-15	MTYNTHVYHQFP	34	IM1-3AS-16	EVMHI SFHPHPR
	15	IM1-3T-16	MTYNTHYYUQFP	35	IM1-3AS-17	NSADSYSSQLYY
	16	IM1-3T-18	LTHPQDSPPASA	36	IM1-3AS-18	TTHTWTQEAAGH
	1	IN1_3T-19	T SMLAY DMP.NAL	37	IM1-3AS-20	SGYVLPGTQPQR
	18	IM1-3T-20	SLIAVHSRETAM	38	IM1-3AS-21	MEPHERWVNKHY
	19	IM1-3T-21	QFKGMKPDLPGT			
	20	IM1-3T-22	WLAPLPRMAIHT			

- T-18 identified as candidate gut-targeting sequence
 - Isolated in several rounds of screening

Ex Vivo Staining of Intestine

Intestinal qPCR

Sham Animal

Intestinal qPCR

2 Hour Burn

DNA Sequencing of PCR Product

Quantum Dots

- Fluorescent nanoparticles
- Emit light which can be visualized using confocal microscopy
- Peptide sequence coupled to Qdot
- Used as a reporter to visualize distribution of the peptide sequence

Invitrogen.com

Qdot Imaging of T18 Sequence

Summary

- Utilized phage display to screen for peptides that target the intestinal barrier
- Identification of a 12 amino acid peptide sequence that binds and internalizes into intestinal epithelial cells after burn injury
- Demonstrated delivery of fluorescent nanoparticles bound to the peptide sequence

Conclusion

 This sequence may allow for targeted therapies designed to attenuate intestinal dysfunction following severe injury, inflammation, or other pathologic conditions of the small bowel

Future #3: The Neuro-Enteric Axis

- Enteric Nervous System
 - Gastrointestinal tissues innervated by complex component of the peripheral nervous system

Enteric Glia

- Similar to astrocytes of the CNS
- Express glial fibrillary acidic protein (GFAP) when activated
- Promote intestinal barrier function
 - Secretion of S-nitrosoglutathioine (GSNO)

Savidge TC, et al. Lab Invest 2007;87:731-36

GFAP is required to maintain gut architecture

Sham vs. GFAP Conditional knockout

Sham

GFAP-HSV-Tk Mice

- Fatal by 19 days
- Severe inflammation
- Hemorrhagic necrosis

Bush TG, et al. Cell 1998;93:189-201

Inflammation activates enteric glia cells

Control

IL1- β

Pro-inflammatory cytokines increase percentage of GFAP positive staining (red) neurons

Von Boynen, et al. Gut 2004;53:222-28

Addition of enteric glia cells to Caco-2 culture improves barrier function and tight junction protein expression

Addition of enteric glia cells (EGC) to Caco2 cell culture:

- Increases occludin and ZO-1 levels
- Improves barrier function (TER and FITC-Dextran)

Savidge TC, et al. Gastroenterology 2007;132:1344-58

Enteric glia cells secrete GSNO when activated, which improves intestinal barrier function at low concentrations

GSNO improves barrier function at low concentrations and increases Permeability at high concentrations

Intestinal GFAP qPCR Time Course

Intestinal GFAP- Confocal Time Course

Green = S100 Red = GFAP

GFAP-luc Transgenic Mice

Quantification of Luminescence from GFAP-luc Mice

Histology

Vagal Stim / Burn

Vagotomy / Vagal Stim / Burn

Intestinal Permeability 4 hrs Post-burn

Occludin Western blot 4hrs post-burn

Intestinal GFAP qPCR 4 hours post-burn

GFAP Confocal- 4 hrs post-burn

60X Magnification Comparison

Conclusions

- Past: Translocation through the portal ٠ vein to liver.
- Present: Lymph route more important ٠
- Future: Already here ٠
 - Non-invasive method of monitoring organ injury. One animal – multiple measurements
 - Drug delivery to target cells. Specific, more effective, perhaps cheaper
 - Manipulation of PNS and enteric glia – promising therapeutic strategy.

Sham

The UCSD Team

- Faculty
 - R. Coimbra MD, PhD
 - B. Potenza MD
 - J. Doucet MD
 - V. Bansal MD
 - J. Lee MD
 - B. Eliceiri PhD
 - A. Baird PhD
- TPM
 - S. Pacyna RN
- Clinical Fellows
 - L Nwakanma MD
 - P Bosarge MD

- Research Fellows
 - T Costantini MD
 - C Peterson MD
- Programmer / Analyst
 Dale Fortlage BA
- Trauma Registrar
 P. Stout RN
 - C. Mohrle RN
- Data Entry and Maintenance
 - E. Hernandez
- Administrative Assistant
 R. Velez

Christine Cocanour, MD Program Committee Chair

Grace Rozycki, MD & David Feliciano, MD

Thank you

Downtown San Diego

http://trauma.ucsd.edu